Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 9(4): 6169-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23237987

RESUMO

Magnetic porous silicon flakes (MPSF) were obtained from mesoporous silicon layers formed by multi-step anodization and subsequent composite formation with Fe oxide nanoparticles by thermal annealing. The magnetic nanoparticles adhered to the surface and penetrated inside the pores. Their structure evolved as a result of the annealing treatments derived from X-ray diffraction and X-ray absorption analyses. Moreover, by tailoring the magnetic load, the dynamic and hydrodynamic properties of the particles were controlled, as observed by the pressure displayed against a sensor probe. Preliminary functionality experiments were performed using an eye model, seeking potential use of MPSF as reinforcement for restored detached retina. It was observed that optimal flake immobilization is obtained when the MPSF reach values of magnetic saturation >10(-4)Am(2)g(-1). Furthermore, the MPSF were demonstrated to be preliminarily biocompatible in vitro. Moreover, New Zealand rabbit in vivo models demonstrated their short-term histocompatibility and their magnetic functionality as retina pressure actuators.


Assuntos
Pressão Intraocular/fisiologia , Nanopartículas de Magnetita/química , Retina/fisiologia , Silício/química , Transdutores de Pressão , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Calefação , Campos Magnéticos , Porosidade , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...